Topic F

Multiplication of Single-Digit Factors and Multiples of 10

3.OA.5, 3.OA.8, 3.OA.9, 3.NBT.3, 3.OA.1

Focus Standard:

3.OA.5 Apply properties of operations as strategies to multiply and divide. (Students need not use formal terms for these properties.) Examples: if 6 × 4 = 24 is known, then 4 × 6 = 24 is also known. (Commutative property of multiplication.) 3 × 5 × 2 can be found by 3 × 5 = 15, then 15 × 2 = 30, or by 5 × 2 = 10, then 3 × 10 = 30. (Associative property of multiplication.) Knowing that 8 × 5 = 40 and 8 × 2 = 16, one can find 8 × 7 as 8 × (5 + 2) = (8 × 5) + (8 × 2) = 40 + 16 = 56. (Distributive property.)

3.OA.8 Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. (This standard is limited to problems posed with whole numbers and having whole-number answers; students should know how to perform operations in the conventional order when there are no parentheses to specify a particular order, i.e., Order of Operations.)

3.OA.9 Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.

3.NBT.3 Multiply one-digit whole numbers by multiples of 10 in the range 10–90 (e.g., 9 × 80, 5 × 60) using strategies based on place value and properties of operations.

Instructional Days: 3

Coherence -Links from:
G2–M3 Place Value, Counting, and Comparison of Numbers to 1000
G2–M6 Foundations of Multiplication and Division
G3–M1 Properties of Multiplication and Division and Solving Problems with Units of 2–5 and 10

-Links to:
G3–M4 Multiplication and Area
G4–M3 Multi-Digit Multiplication and Division
G4–M7 Exploring Multiplication

In Lesson 19, students initially use the place value chart to multiply by multiples of 10. To solve 2 × 40, for example, they begin by modeling 2 × 4 in the ones place. Students relate this to multiplying 2 × 4 tens, locating the same basic fact in the tens column. They see that when multiplied by 10, the product shifts one
place value to the left. Complexities are addressed as regrouping becomes involved with problems like \(4 \times 6\), where the product has mixed units of tens and ones. However, the same principle applies—the digits shift once to the left.

Lesson 20 carries students’ understanding from Lesson 19 to more abstract situations using a wider range of multiples of 10. Students learn to model place value strategies using the associative property. \(2 \times 30 = 2 \times (3 \times 10) = (2 \times 3) \times 10\) and \(4 \times 60 = 4 \times (6 \times 10) = (4 \times 6) \times 10\). In Lesson 21, students apply learning from Topic F to solving two-step word problems and multiplying single-digit factors and multiples of 10. They use the rounding skills learned in Module 2 to estimate and assess the reasonableness of their solutions.

A Teaching Sequence Towards Mastery of Multiplication of Single-Digit Factors and Multiples of 10

| Objective 1: Multiply by multiples of 10 using the place value chart. (Lesson 19) |
| Objective 2: Use place value strategies and the associative property \(n \times (m \times 10) = (n \times m) \times 10\) (where \(n\) and \(m\) are less than 10) to multiply by multiples of 10. (Lesson 20) |
| Objective 3: Solve two-step word problems involving multiplying single-digit factors and multiples of 10. (Lesson 21) |
Lesson 19

Objective: Multiply by multiples of 10 using the place value chart.

Suggested Lesson Structure

- Fluency Practice (15 minutes)
- Concept Development (20 minutes)
- Application Problem (15 minutes)
- Student Debrief (10 minutes)
- Total Time (60 minutes)

NOTES ON TIMING:
Since the Application Problem comes after the Concept Development in this lesson, the 15 minutes allotted for it includes 5 minutes for the Application Problem and 10 minutes for the Problem Set.

Fluency Practice (15 minutes)

- Group Counting 3.OA.1 (4 minutes)
- Multiply by 10 3.NBT.3 (3 minutes)
- Multiply by Different Units 3.NBT.3 (4 minutes)
- Exchange Number Disks 3.NBT.3 (4 minutes)

Group Counting (4 minutes)

Note: Group counting reviews interpreting multiplication as repeated addition. These counts review the multiplication taught earlier in the module. Direct students to count forward and backward, occasionally changing the direction of the count:
- Sixes to 60
- Sevens to 70
- Eights to 80
- Nines to 90

Multiply by 10 (3 minutes)

Note: This fluency prepares students for today’s lesson.

T: I’ll say a multiplication problem. You say the answer. 10 × 1.
S: 10 × 1 = 10.

Continue with the following possible sequence: 10 × 2, 10 × 3, 10 × 8, 10 × 6.

T: I’ll say a multiple of 10. You say the multiplication fact starting with 10. 20.
S: 10 × 2 = 20.
Lesson 19: Multiply by multiples of ten using the place value chart.

Date: 7/31/13

Multiply by Different Units (4 minutes)

Materials: (S) Personal white boards

Note: This fluency prepares students for today’s lesson.

T: (Write 2 x 3 = ___.) Say the multiplication equation in unit form.
S: 2 ones x 3 = 6 ones.
T: (Write 2 cats x 3 = ___.) On your boards, write the multiplication equation.

Exchange Number Disks (4 minutes)

Materials: (S) Number disks

Note: This fluency prepares students for today’s lesson.

T: Make an array showing 3 by 2 ones. Say how many ones you have as a multiplication equation.
S: 3 x 2 ones = 6 ones.

Continue with the following possible sequence: 3 by 3 ones, 4 by 2 ones, and 5 by 2 ones.

T: 10 ones can be exchanged for 1 of what unit?
S: 1 ten.
T: Trade your 10 ones for 1 ten.
T: Make an array showing 4 by 5 ones.
T: Say how many ones you have as a multiplication equation.
S: 4 x 5 ones = 20 ones.
T: Say the multiplication equation again; this time say the answer in units of 10.
S: 4 x 5 ones = 2 tens.
T: Trade your 20 ones for 2 tens.

Concept Development (20 minutes)

Materials: (T/S) Number disks (S) Personal white boards

Problem 1: Multiply by multiples of 10 using place value disks.

T: Use your disks to show 2 rows of 3 ones.
S: (Model 2 x 3 ones array.)
Lesson 19

Multiply by multiples of ten using the place value chart.

Date: 7/31/13

© 2013 Common Core, Inc. Some rights reserved. commoncore.org

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

T: (Write 2×3 ones = ______ ones.) Our array shows this equation, true?
S: True.

T: How many ones do we have in total?
S: 6 ones.

T: Say the multiplication equation in standard form.
S: $2 \times 3 = 6$.

T: Use your disks to show 2 rows of 3 tens.
S: (Model 2 × 3 tens array.)

T: (Write 2×3 tens = ______ tens.) How many tens do we have in total?
S: 6 tens.

T: What is the value of 6 tens?
S: 60.

T: Say the multiplication equation in standard form.
S: $2 \times 30 = 60$.

Repeat the process with 3×4 ones and 3×4 tens, 2×6 ones and 2×6 tens.

Problem 2: Multiply by multiples of 10 using a place value chart.

T: (Project or draw the image shown at right.) Use the chart to write an equation in both unit form and standard form.
S: (Write 2×5 ones = 10 ones and $2 \times 5 = 10$.)

T: How many ones do I have in total?
S: 10 ones.

T: (Project or draw the image shown at right.) Compare the two charts. What do you notice about the number of dots?

S: The number of dots is exactly the same in both charts. The only thing that changes is where they are placed. The dots moved over to the tens place.

T: Since we still have a total of ten dots, what change do you think we will make in our equations?
S: The units will change from ones to tens.

T: Write your equations now.

S: (Write equations.)

T: Say the full equation.

- 2×3 ones = 6 ones
- 2×3 tens = 6 tens
- $2 \times 30 = 60$
- 2×5 ones = _______ ones
- $2 \times 5 = _______$
- 2×5 tens = _______ tens
- $2 \times 50 = _______
S: 2 times 50 equals 100.

Repeat the process with 3×6 ones and 3×6 tens.

T: (Write $80 \times 6 = \underline{\hspace{2cm}}$.) How would you use this strategy to solve a more complicated problem like the one on the board?

S: We can first think of the problem as 8 ones $\times 6$, which is 48. We know that fact since we've been practicing our sixes. \rightarrow Then all we have to do is move the answer over to the tens place, so it becomes 48 tens. \rightarrow So the answer is 480!

Repeat the process with 7×90 and 60×4 to give the students an opportunity to discuss the unit form strategy with more complex problems.

Application Problem (15 minutes)

Mia has 152 beads. She uses some to make bracelets. Now there are 80 beads. If she uses 8 beads for each bracelet, how many bracelets does she make?

NOTES ON TIMING:

The 15 minutes allotted for the Application Problem includes 5 minutes for the word problem to the left, and 10 minutes for the Problem Set.

Note: This problem reviews solving two-step word problems involving more than one operation from Lesson 18.

Problem Set (10 minutes)

Students should do their personal best to complete the Problem Set within the allotted 10 minutes. For some classes, it may be appropriate to modify the assignment by specifying which problems they work on first. Some problems do not specify a method for solving. Students solve these problems using the RDW approach used for Application Problems.

NOTES ON MULTIPLE MEANS OF ENGAGEMENT:

Instead of completing the Problem Set, give English language learners the option of writing a response to either of the first two Debrief questions. This chance to reflect and prepare their response in English may increase their confidence and participation in the Student Debrief.
Student Debrief (10 minutes)

Lesson Objective: Multiply by multiples of 10 using the place value chart.

The Student Debrief is intended to invite reflection and active processing of the total lesson experience.

Invite students to review their solutions for the Problem Set. They should check work by comparing answers with a partner before going over answers as a class. Look for misconceptions or misunderstandings that can be addressed in the Debrief. Guide students in a conversation to debrief the Problem Set and process the lesson.

You may choose to use any combination of the ideas below to lead the discussion.

- How do the disks in Problem 1 show the strategy we learned today?
- What is the relationship between the charts on the left column and the charts on the right column in Problem 2? How did the left column help you solve the problems on the right column?
- How does knowing your multiplication facts help you easily multiply by multiples of 10?
- Now that we know a strategy for multiplying with multiples of 10, how would we use the same process for multiplying with multiples of 100? What would be the same? (The multiplication facts.) What would change? (The units.)

Exit Ticket (3 minutes)

After the Student Debrief, instruct students to complete the Exit Ticket. A review of their work will help you assess the students’ understanding of the concepts that were presented in the lesson today and plan more effectively for future lessons. You may read the questions aloud to the students.
Lesson 20

Objective: Use place value strategies and the associative property
\[n \times (m \times 10) = (n \times m) \times 10 \] (where \(n \) and \(m \) are less than 10) to multiply multiples of 10.

Suggested Lesson Structure

- Fluency Practice (15 minutes)
- Application Problem (5 minutes)
- Concept Development (30 minutes)
- Student Debrief (10 minutes)
- Total Time (60 minutes)

Fluency Practice (15 minutes)

- Group Counting 3.OA.1 (3 minutes)
- Multiply by Different Units 3.NBT.3 (6 minutes)
- Write In the Parentheses 3.OA.7 (6 minutes)

Group Counting (3 minutes)

Note: Group counting reviews interpreting multiplication as repeated addition. The counts in these lessons review the multiplication taught earlier in the module. Direct students to count forward and backward, occasionally changing the direction of the count:

- Sixes to 60
- Sevens to 70
- Eights to 80
- Nines to 90

Multiply by Different Units (6 minutes)

Materials: (5) Personal white boards

Note: This fluency reviews Lesson 19.

T: (Write 2 \times 3 = ____.) Say the multiplication equation in unit form.

S: 2 ones \times 3 = 6 ones.

T: Say it in standard form.
Lesson 20

NYS COMMON CORE MATHEMATICS CURRICULUM

Lesson 20

Use place value strategies and the associative property

\(n \times (m \times 10) = (n \times m) \times 10 \) (where \(n \) and \(m \) are less than 10)

to multiply multiples of 10.

Date: 7/31/13

© 2013 Common Core, Inc. Some rights reserved. commoncore.org

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

S: \(2 \times 3 = 6. \)
T: (Write 2 tens \(\times 3 = \) _._) On your boards, write the multiplication equation.
S: (Write 2 tens \(\times 3 = 6 \) tens.)
T: Below your equation, write a second multiplication equation in standard form.
S: (Write \(20 \times 3 = 60 \).)

Continue with the following possible sequence: \(4 \times 2, 4 \text{ tens} \times 2, 5 \times 3, 5 \times 3 \text{ tens}, 6 \times 4, 6 \times 4 \text{ tens}. \)
T: (Write 7 \(\times 6 = \) _._) Say the multiplication equation.
S: \(7 \times 6 = 42. \)
T: (Write \(70 \times 6 = \) _._) Write the multiplication equation.
S: (Write \(70 \times 6 = 420. \))

Continue with the following possible sequence: \(8 \times 8, 8 \times 80; 9 \times 8, 90 \times 8; 6 \times 6, 60 \times 6; 8 \times 7, 8 \times 70; 4 \times 9, 40 \times 9; 9 \times 6, 90 \times 6. \)

Write In the Parentheses (6 minutes)

Materials: (S) Personal white boards

Note: This fluency reviews the use of parentheses and prepares students for today’s lesson.

T: (Write \(4 \times 5 = 2 \times 2 \times 5 \).) What’s \(4 \times 5 \)?
S: \(20. \)
T: On your boards, copy the equation. Then write in parentheses and solve.
S: (Write \(4 \times 5 = 2 \times 2 \times 5 \). Beneath it, write \(20 = (2 \times 2) \times 5 \).)

Continue with the following possible sequence: \(6 \times 4 = 6 \times 2 \times 2, 6 \times 6 = 6 \times 2 \times 3, 4 \times 7 = 2 \times 2 \times 7, 7 \times 8 = 7 \times 4 \times 2, 8 \times 4 = 8 \times 2 \times 2, 8 \times 6 = 8 \times 3 \times 2, 9 \times 6 = 9 \times 3 \times 2, 9 \times 8 = 9 \times 4 \times 2. \)
Lesson 20

Application Problem (5 minutes)

Model 3×4 on a place value chart. Then explain how the array can help you solve 30×4.

This array shows $3 \text{ ones} \times 4 = 12 \text{ ones}$. 30×4 is just $3 \text{ tens} \times 4$ which is equal to 12 tens, or 120. We can move the dots over to the tens place to show this, because the only thing that changes is the unit.

Note: This problem reviews multiplying by multiples of 10 from Lesson 19. In today’s Concept Development, students will build on their understanding from Lesson 19 to multiply by multiples of 10 using the associative property.

Concept Development (30 minutes)

Materials: (S) Personal white boards

T: (Write 40×2.) Which tens fact gives us a product of 40?
S: 10×4.
T: Let’s rewrite our equation. (Write $(10 \times 4) \times 2$.) Why do you think I put 10×4 in parentheses?
S: The parentheses show that when you group those numbers together and multiply, you get 40. The parentheses remind us that we put 10×4 where 40 used to be.
T: Let’s move the parentheses to change the way the numbers are grouped.
T: On your board, use the parentheses to group the numbers differently.
S: $(10 \times (4 \times 2))$.
T: Is this problem friendlier than 40×2?
S: Oh, it’s just 10×8! That’s the same as 80! That was a little easier than multiplying by 40.

Repeat the process with 20×3, 30×3, and 50×2.

T: (Project or draw Image A shown below.) Use the chart to write a multiplication equation in unit form.
S: $(3 \times 6 \text{ ones} = 18 \text{ ones})$.

Use place value strategies and the associative property $n \times (m \times 10) = (n \times m) \times 10$ (where n and m are less than 10) to multiply multiples of 10.
Lesson 20

NYS COMMON CORE MATHEMATICS CURRICULUM

Lesson 20

T: Now I want to multiply my 18 ones by ten. Watch as I show this on the chart. I can redraw my dots into the tens place and draw an arrow (draw arrow) to remind myself that they move to the next unit. Let’s multiply our 3 groups of 6 ones by 10.

T: (Write \((3 \times 6 \text{ ones}) \times 10 = ___.\)) What is the answer to 18 ones \(\times 10\) in unit form?

S: 18 tens!

T: What is the value of 18 tens?

S: 180.

T: (Project or draw Image B shown at right.) This time I already moved my 6 ones to make them 6 tens. Use the chart to write a multiplication equation in unit form.

S: (Write \(6 \text{ ones} \times 10 = 6 \text{ tens}\).)

T: Now I want to multiply my 6 tens by 3. How many rows do I need to add to show 3 rows of 6 tens?

S: 2 rows.

T: (Add 2 rows of 6 tens and write \(3 \times (6 \times 10)\).) How does my array show this expression? Tell your partner.

S: There are 3 rows of 6 tens. \(\rightarrow\) Six tens is the same as \(6 \times 10\). It has the parentheses around it because we did that first on the chart. \(\rightarrow\) Then we multiplied the \(6 \times 10\) by 3.

T: What is the answer to \(3 \times 6 \text{ tens}\) in unit form?

S: 18 tens! \(\rightarrow\) 180.

T: Compare the equations \((3 \times 6 \text{ ones}) \times 10\) and \(3 \times (6 \times 10)\). What do you notice about the factors we used?

S: The factors are the same! 3, 6, and 10. The units are different, and so is the order of what you multiply first.

T: In both charts we saw how multiplying the ten, even at different times, made it easier to solve.

Repeat the process with \((4 \times 5) \times 10\) and \(4 \times (5 \times 10)\).

Problem Set (10 minutes)

Students should do their personal best to complete the Problem Set within the allotted 10 minutes. For some classes, it may be appropriate to modify the assignment by specifying which problems they work on first. Some problems do not specify a method for solving. Students solve these problems using the RDW approach used for Application Problems.
Student Debrief (10 minutes)

Lesson Objective: Use place value strategies and the associative property \(n \times (m \times 10) = (n \times m) \times 10 \) (where \(n \) and \(m \) are less than 10) to multiply by multiples of 10.

The Student Debrief is intended to invite reflection and active processing of the total lesson experience.

Invite students to review their solutions for the Problem Set. They should check work by comparing answers with a partner before going over answers as a class. Look for misconceptions or misunderstandings that can be addressed in the Debrief. Guide students in a conversation to debrief the Problem Set and process the lesson.

You may choose to use any combination of the questions below to lead the discussion.

- In Problem 1, which grouping is easier for you to solve? Why?
- How do you see the parentheses move in the place value charts in Problem 1?
- Invite students to share how they knew where to draw parentheses for the equations in Problem 2.
- In Problem 3, how did Gabriella simplify the problem?
- Why didn’t we have to have a hundreds column in our place value charts?
- How is this new strategy helpful in finding unknown, larger facts?

Exit Ticket (3 minutes)

After the Student Debrief, instruct students to complete the Exit Ticket. A review of their work will help you assess the students’ understanding of the concepts that were presented in the lesson today and plan more effectively for future lessons. You may read the questions aloud to the students.
Lesson 21

Objective: Solve two-step word problems involving multiplying single-digit factors and multiples of 10.

Suggested Lesson Structure

- Fluency Practice (15 minutes)
- Concept Development (35 minutes)
- Student Debrief (10 minutes)

Total Time (60 minutes)

Fluency Practice (15 minutes)

- Sprint: Multiply by Multiples of 10 3.NBT.3 (9 minutes)
- Group Counting 3.OA.1 (3 minutes)
- Write In the Parentheses 3.OA.7 (3 minutes)

Sprint: Multiply by Multiples of 10 (9 minutes)

Materials: (S) Multiply by Multiples of 10 Sprint

Note: This Sprint reviews Lesson 19, multiplying single-digit numbers by multiples of 10.

Group Counting (3 minutes)

Note: Group counting reviews interpreting multiplication as repeated addition. These counts review multiplication taught earlier in the module. Direct students to count forward and backward, occasionally changing the direction of the count:

- Sixes to 60
- Sevens to 70
- Eights to 80
- Nines to 90

Write In the Parentheses (3 minutes)

Materials: (S) Personal white boards

Note: This fluency reviews Lesson 20.

A NOTE ON STANDARDS ALIGNMENT:

This lesson incorporates the use of seconds in both the Concept Development and in the Problem Set. Students are familiar with seconds from G3–M2–Lesson 1, although they are included in the Grade 4 standard (4.MD.1). In this lesson the conversion between minutes and seconds is always provided when needed.
Lesson 21

Solve two-step word problems involving multiplying single-digit factors and multiples of 10.

Date: 7/31/13

Concept Development (35 minutes)

Materials: (T) Stopwatch, Multiples of 10 multiplication cards (S) Personal white boards

Place one card face down on each student’s desk. When you say, “Go,” each student solves his problem and then lines up with the entire class, ordering products from least to greatest. Instruct students to complete these tasks silently and quickly. Let them know that you will time them and that extra time will be added as a penalty if they are too noisy.

T: It took you 4 minutes and 13 seconds to find the products and order them from least to greatest. How do we find the total number of seconds it took to complete this activity?

S: Add the total seconds in 4 minutes to 13 seconds. We need to know how many seconds are in 1 minute first.

T: There are 60 seconds in 1 minute. Draw and label a tape diagram to show the total number of seconds in 4 minutes. Label the unknown as n. Then check with a partner.

S: (Draw and label. Then check with a partner.)

T: Write an equation. Then solve.

S: (Write $4 \times 60 = n$, $n = 240$.)

T: Discuss with a partner the strategy you used to solve 4×60.

T: (After discussion, call on some to share.)

S: I thought of it as 4×6 tens, which equals 24 tens. And 24 tens is 240. I thought of it as $(4 \times 6) \times 10$, which is 24×10, which equals 240. It’s like 24 tens is 10 tens + 10 tens + 4 tens or $100 + 100 + 40 = 240$.

T: Four minutes is equal to how many seconds?

S: 240 seconds.

T: Whisper the next step to your partner.

S: (Add 13 seconds to 240 seconds.)
Lesson 21: Solve two-step word problems involving multiplying single-digit factors and multiples of 10.

Date: 7/31/13

T: Add that to your diagram and label the total number of seconds using a letter for the unknown. Then solve for t. How many seconds did it take you to complete the activity?

S: 253 seconds!

Project the following problems on the board and invite students to problem solve independently or in pairs using the RDW process:

- Each day Andrea does 25 squats to warm up for gymnastics practice and 15 squats to cool down after practice. How many squats does she do in all when she practices Monday through Friday?
- Benny gets $5 a week for allowance. After saving his money for 20 weeks, how much more does Benny need to buy a bike that costs $108?
- Genevieve makes 43 bracelets. She gives 13 bracelets away as gifts and sells the rest for $4 each. How much money does Genevieve make in all?

The above problems represent a variety of two-step word problems and will provide varied practice for the students.

Problem Set (15 minutes)

Students should do their personal best to complete the Problem Set within the allotted 10 minutes. For some classes, it may be appropriate to modify the assignment by specifying which problems they work on first. Some problems do not specify a method for solving. Students solve these problems using the RDW approach used for Application Problems.

Student Debrief (10 minutes)

Lesson Objective: Solve two-step word problems involving multiplying single-digit factors and multiples of 10.

The Student Debrief is intended to invite reflection and active processing of the total lesson experience.

Invite students to review their solutions for the Problem Set. They should check work by comparing answers with a partner before going over answers as a class. Look for misconceptions or misunderstandings that can be addressed in the Debrief. Guide students in a conversation to debrief the Problem Set and process the lesson.

You may choose to use any combination of the questions below to lead the discussion.

- In Problem 2, how many more months will Lupe...
need to save so she has enough to buy the art supplies? How do you know?

- In Problem 3, how many dollars does Brad earn? You may want prompt students by asking how many cents are in 1 dollar.
- Discuss the second step of Problem 4 with a partner. How was this different than the other problems? Explain how you could solve it with multiplication.
- Explain how you needed to find three unknowns to complete Problem 5.
- Explain to a partner how you solved Problem 6. Explain how you could have used the multiplying by 10 strategy to help you solve this problem.

Exit Ticket (3 minutes)

After the Student Debrief, instruct students to complete the Exit Ticket. A review of their work will help you assess the students’ understanding of the concepts that were presented in the lesson today and plan more effectively for future lessons. You may read the questions aloud to the students.